

ISSN= 2345-3877

12 | P a g e

International Journal of Computer & Information Technologies (IJOCIT)
www.ijocit.org & www.ijocit.ir

ISSN= 2345-3877

A Note on the 3-Sum Problem

Keivan Borna1, Zahra Jalalian2

 Faculty of Mathematical Sciences and Computer1, Faculty of Engineering2

Kharazmi University1& 2

borna@khu.ac.ir 1 , jalalian@khu.ac.ir2

Keywords: 3-Sum Problem, Computational Complexity, Linear Hash Function, Motion Planning.

1. Introduction

The 3-Sum problem for a given set S of n

integers asks whether there exist a three-tuples of

elements from S that sum up to zero. A problem

P is 3-Sum-hard if every instance of 3-Sum of

size n can be solved using a constant O(n2)

additional time. One can think of a 3-SUM-hard

problem in many interesting situations including

incidence problems, separator problems,

covering problems and motion planning.

Obviously by testing all three-tuples this

problem can be solved in O(n3) time.

Abstract: The 3-Sum problem for a given set S of integers is subject to find all three-tuples (a, b,

c) for which a + b + c = 0. In computational geometry many other problems like motion planning

relate to this problem. The complexity of existing algorithms for solving 3-Sum are O(n2) or a

quotient of it. The aim of this paper is to provide a linear hash function and present a fast algorithm

that finds all suitable three-tuples in one iteration of S. We also improve the performance of our

algorithm by using index tables and dividing S into two negative and non-negative parts.

http://www.ijocit.org/
http://www.ijocit.ir/
mailto:borna@khu.ac.ir
mailto:jalalian@khu.ac.ir2

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Keivan Borna

August 23, 2013 Volume 1, Issue 1

Furthermore if the elements of S are sorted then

we can use Algorithm 1 with O(n2) complexity.

It is interesting to mention that Algorithm 1 is

essentially the best algorithm known for 3-Sum

and it is believed that the problem cannot be

solved in sub-quadratic time, but so far this has

been proven in some very restricted models of

computation only, such as the linear decision tree

model. In fact Erickson [4, 5] proved an Ω(n2)

lower bound in the restricted linear decision tree

model. This model is based on the transpose of

the transformation presented in [3] that maps

each point (a, b) to the line y = ax + b and vice-

versa. However, the problem remained unsolved

in general for other computational models.

 In [1] the authors presented a sub-quadratic

algorithms for 3-Sum. More precisely on a

standard word RAM with w-bit words, they

obtained a running time of

This method is based on using an almost linear

map h that was already introduced in [2]. In fact

for a random odd integer a on w bits, the hash

function h maps each x to the first s = lgw bits of

a *x. In the second section of [1] for a given σ,

the authors found suitable a, b for which σ =

a+b. In fact they proved that if σ = a+b then h(σ

) = h(a) h(b) {0,1} and if σ ≠ a+b then h(a)

h(b) h(- σ) ϵ {0, -1,-2 } is only true with small

probability, i.e., if h(a) h(b) h(-σ) {0, -1,

-2} then there is no (a, b) for which σ = a+b.

Notice that the operator is modulo 2s and we

have h(a) h(b h(c) ϵ h(a+b+c) {0, 1, 2}.

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Keivan Borna

August 23, 2013 Volume 1, Issue 1

Furthermore since multiplication is linear,

removing the first w-s bits of the multiplication

makes h to be non-linear. The reason to use the

factor {0, 1, 2} is to make this map linear. We

refer the interested reader to see [2, 6] for more

information about this hash function which is

known as Universal hashing.

In this paper we apply a linear hash function h

that uses only one substraction operation. More

precisely for a sorted array S of length n we

define h via h(i) = S[i] - S[1]. Now we construct

a new array R of length S[n-2] - S[1] +1 for

which the relation R[h(i)] = S[i] between the

indices and values of its elements is established.

In fact R indicates a set that is created by h and

knowing the value h(i) one can obtain S[i] as

S[i] = h(i) + S[1]. Now applying our algorithm

and by only one iteration over S one can find all

three-tuples (a, b, c) for which a + b + c = 0.

The organization of this paper is as follows. In

Section 2 our proposed algorithm and its

complexity analysis are presented. In Section 3

the performance of our algorithm by using index

tables instead of arrays and dividing S into two

specific parts are improved. Finally Section 4 is

devoted to some conclusions and future works.

2. Our Algorithm

In this section we present our proposed

algorithm. For the ease of reader more details

about this algorithm will be given during an

example. Let S be a sorted array of integers of

length n. We first define a hash function h with

h(i) = S[i]- S[1]. Then we construct a sorted

array R of length size R = S[n-2]- S[1]+1

initialized with S[0] - 1. Then we allocate

members of S in R via h and the formula R[h(i)]

= S[i]. Now let indexa = 0, indexc = n - 1; a =

S[indexa], c = S[indexc].

Repeat the following commands while indexa <

n - 3:

1. Let indexb = - (a + c) - S[1]. In fact

index b represents the index of b in array

R for which a + b + c = 0.

2. If indexb ≥ 0, indexb < sizeR and

R[indexb] ̸= S[0]-1 then let b =

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Keivan Borna

August 23, 2013 Volume 1, Issue 1

R[indexb]. Now if a+b+c = 0 and b > a

and b < c then we have found a suitable

three-tuples. In order to find the other

solutions let indexc = indexc - 1 and do

the next repetition of the loop.

3. If (a + c < S[0] and a + c > S[n - 1]) or a

≥ c, then there is no suitable value for b

for which a + b + c = 0 and so a must be

changed with larger values in S. Thus in

order to find a solution let indexa =

indexa + 1, a = S[indexa]; indexc = n -

1 and c = S[indexc] and do the next

repetition of the loop.

4. Else if a < c, then c is too large and so c

must be changed with smaller values in

S. That is let indexc = n - 1 and c =

S[indexc].

In the following, Algorithm 2 computes all

suitable three-tuples for the 3-Sum problem:

As an example if S is an array with 8

elements -25, -10, -7, -3, 2, 4, 8, 10, then R

has 19 elements and index of each element of

it will be computed via S[i] - S[1]. Thus R[0]

= -10 , R[3] = -7, … , R[18] = 10 and the

other cells will be filled with S[0] - 1 = -26.

Hence R = -10, -26, -26, -26, -7, -26, … , -26,

8. Now let a (and c) be the first (and last)

element of S. That is, a = S[0] = -25, c = S[n-

1] = 10. Let j = (-(a + c) - S[1]) = (-(-25 + 10)

- (-10)) = 25 and since j is not in the range of

indices of R, for this a we cannot find b, c.

But since a + c = -15 < 0 hence i = i + 1 = 1, a

= S[i] = -10. Then the new value for j is j = (-

(a+c) - S[1]) = (-(-10+10)-(-10)) = 10. Since

R[10] = -26, no value for b for which a+b+c = 0

is found. On the other hand since a+c = 0 so we

should seek for a smaller value of c. Thus let l =

l - 1 = 6, c = S[l] = 8. Since j = (-(a + c) - S[1]) =

(-(-10 + 8) - (-10)) = 12, b = R[12] = 2 and

a+b+c = -10+2+8 = 0 thus we have found a

suitable three-tuples. Our algorithm reports the

other solution as -7 + -3 + 10 = 0.

ISSN= 2345-3877

12 | P a g e

International Journal of Computer & Information Technologies (IJOCIT)
www.ijocit.org & www.ijocit.ir

ISSN= 2345-3877

One can see that this algorithm finds all the

three tuples a, b, c for which a+b+c = 0 in one

iteration of the given array. Furthermore in this

example one can note that if in each loop three

conditional statements are going to run (in the

middle case), then we obtain 24 statements

totally. Whereas using Algorithm 1 this amount

will be 35. One of the advantages of our

algorithm is that the collisions in our hash

function is impossible, this is because elements

of set S and thus R will not repeat.

http://www.ijocit.org/
http://www.ijocit.ir/

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Keivan Borna

August 23, 2013 Volume 1, Issue 1

3. Improving the performance of

our Algorithm

Two possible limitations of our algorithm are

the use of extra memory and the number of

comparisons. In this section we provide solutions

to overcome these two limitations.

3.1. Using data file plus index table

instead of array

In this subsection we improve the performance

of our algorithm when the number of elements of

S is very large using a bitmap. In fact when the

size of array S is large and it would not fit in the

main memory, we can use a file located in the

auxiliary memory and an index table which is in

the main memory. The data in the file put in

blocks and index table shows the largest amount

of data in each block. In this way we can quickly

access to the address of data and we can check if

there is any \b" for a+ c such that a+b+ c =0.

The bit array R is a word in RAM consisting

of m := S[n-2]-S[1]+1 bits. We initialize all bits

of R with zero. In order to map elements of S in

R, we consider R as a word with at least m bits

in RAM. Then each bit indicates a number in S.

If this bit is one (zero), then we deduce that the

number exists (does not exist) in S. Then for

members of S we use the following formulas:

As an example let S = {-25, -10, -7, -3, 2, 4, 8,

10}. If a = -10, c = 8, then b should satisfy b = -(-

10 + 8) = 2. Therefore using the bitmap we refer

to the bit number b+α= 2+10=12 and if

this bit is one we conclude that b exists in S and

henceforth we have found a suitable three-tuples

in S.

3.2 Dividing S into two parts

When the number of elements of R is very

large and we cannot store S in the main memory,

another useful approach can be applied. As a

matter of fact we can put the array R into a file

and use two index tables for choosing the values

of a and c. Note that in order to have a + b + c =

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Keivan Borna

August 23, 2013 Volume 1, Issue 1

0, at least one of a, b, c should be negative. Thus

we can divide S into two subsets S1 and S2 for

choosing negative and non-negative values and

store them in the main memory. The following

algorithm computes all suitable three-tuples for

the 3-Sum problem very quickly. Let midS

denote the index of the first non-negative

element of S. Let α ϵ 2 S1; c ϵ S2, then using

the relation indexb = - (a+c)+S[1] we can decide

whether b exists in the file or not. If -(a + c) <

S[1] then we have to move a to the next element

of S1, or if -(a + c) > S[n - 1] then there is no

suitable b for the current values of a, c and we

have to take another elements from S1 and S2. As

an example if S = {-25, -10, -7, -3, 2, 4, 8, 10},

then the two index tables are S1 = {-25, -10, -7, -

3}, S2 = {2, 4, 8, 10}. Our algorithm proceeds

and reports the following two solutions: - 10 + 2

+ 8 = 0 = -7 + - 3 + 10. In the following we

present the improved version of our algorithm

for finding all solutions for the 3-Sum problem.

Note that since the sets for choosing the values

for a and c are being smaller, the amount of

comparisons and thus the running time of our

algorithm will decrease.

We conclude our discussions in Sections 2 and

3 in the following theorem. Theorem 1:

Algorithm 3 computes all solutions for the 3-

Sum problem faster than Algorithms 1 and 2.

Finally we compare our Algorithms 2 and 3 with

Algorithm 1. We generated 100 sets all of size

20 of random integers in the range [-50, 50] and

counted the amount of operations that each

algorithm are doing. In figures 1 and 2 (the

outputs of a Java program) the leftmost, the

middle and the rightmost histograms count the

amount of operations that each of Algorithm 1, 2

and 3 are doing, histograms count the amount of

operations that each of Algorithm 1; 2 and 3 are

doing.

In Figure 2 we draw the histograms for the

average amount of operations that each

algorithm are doing.

ISSN= 2345-3877

12 | P a g e

International Journal of Computer & Information Technologies (IJOCIT)
www.ijocit.org & www.ijocit.ir

ISSN= 2345-3877

4. Discussion and Future Works

In this paper a fast and optimized algorithm for

finding all solutions for the 3-Sum problem is

presented. Further works for generalizing this

algorithm to rational and complex numbers are

under progress.

http://www.ijocit.org/
http://www.ijocit.ir/

ISSN= 2345-3877

12 | P a g e

International Journal of Computer & Information Technologies (IJOCIT)
www.ijocit.org & www.ijocit.ir

ISSN= 2345-3877

http://www.ijocit.org/
http://www.ijocit.ir/

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Keivan Borna

August 23, 2013 Volume 1, Issue 1

References

[1] I. Baran, E. D. Demaine, and M. Patrascu,
Subquadratic algorithm for 3-SUM: Proc. 9th
Worksh. Algorithms & Data Structures,
Springer, Berlin/Heidelberg 3668/2005 (2005),
409 - 421.
[2] M. Dietzfelbinger, Universal hashing and k-
wise independent random variables via integer
arithmetic without primes: Lecture Notes in
Computer Science, Proc. 13th Symposium on
Theoretical Aspects of Computer Science
(1996), 569- 580.
[3] H. Edlesbrunner, J. ORourke, and R. Seidel,
Constructing arrangements of lines and
hyperplanes with applications: Lecture Notes in
Computer Science, SIAM. J. Computer. 15
(1986), 341-363.
[4] J. Erickson, Lower bounds for fundamental
geometric problems, PhD thesis, University of
California at Berkeley, 1996.
[5] , Lower Bounds for Linear Satisfiability
Problem: Chicago Journal of Theoretical
Computer Science 8 (1999).
[6] M. N. Wegman and J. L. Carter, New classes
and applications of hash functions, Proc. 20th
IEEE FOCS (1979), 175-182.

Authors Profile:

 Dr. Keivan Borna is an

Assistant Professor at the Department of

Computer Science in Faculty of Mathematics

and Computer Science of Kharazmi University

of Tehran since 2008. He completed his Ph.D. in

September 2008 from the Department of

Mathematics, Statistics and Computer Science of

University of Tehran in Computational

Commutative Algebra. He was a visiting scholar

in ``Dipartemento di Matematicha, Universita' di

Genova- Italia" and ``Department of Mathematik

and Informatik at Essen University, Germany’’,

from Sep. 2007 to Apr. 2008 during his graduate

work. He is very interested in studying and

researching in interdisciplinary topics like

"Cryptography", “Approximate Algorithms",

"Musical Data Analysis", "Motion planning” and

"Computational Geometry". He published some

papers in such areas. He is the author of the

``Advanced Programming in JAVA’’ (in

Persian) and is the member of ``Elite National

Foundation of Iran’’.

 Zahra Jalalian is a faculty

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Keivan Borna

August 23, 2013 Volume 1, Issue 1

 member at the department of Engineering,

Kharazmi University, Tehran, Iran. She got her

master degree from Concordia University,

Montreal, Canada. Zahra has more than a decade

of teaching experience on software engineering

and computer science undergraduate courses.

Also she has some accepted articles in software

engineering and computer science conferences.

Zahra’s research interest is in the area of

algorithm design and artificial intelligence.

