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1.  Introduction 

Suppose that two competing market players 

alternate placing their facilities one at a time, in a  

 

 

city. Let us assume that customers are equally 

distributed and that each customer shops at the  

 

 

Abstract:  In this paper, we consider the competitive facility location problem as a version of n-

round Manhatan-metric Voronoi game with two players, where the distance measure is the Man- 

hattan metric. Players alternate placing points, one at a time, into the playing arena that is a 

symmetric polygon, until each of them has placed n points. The arena is then subdivided according to 

the nearest-neighbor rule under the Manhattan distance, and the player whose points control the 

larger area wins. We study a winning strategy for the second player in a special version of the game. 

http://www.ijocit.ir/
http://www.ijocit.org/


  

© 2013,   IJOCIT All Rights Reserved                                                                                                                                   Page 25 
 

International Journal of Computer & Information Technologies (IJOCIT) 

Corresponding Author:      Marzieh Eskandari                                                               

August 23, 2013                                                               Volume 1, Issue 1 

 

market closest to her residence. Also assume 

that distance between two points is an orthogonal 

distance like perpendicular city streets. The 

Voronoi Game is a simple geometric model for 

the competitive facility location. Competitive 

facility location studies the placement of sites by 

competing market players. The geometric 

concepts are combined with game theory 

arguments to study if there exists any winning 

strategy. The Voronoi Game is played by two 

players, White and Black, who place a specified 

number, n, of facilities in a region Q. They 

alternate placing their facilities one at a time, 

with White going first. No point that has been 

occupied can be changed or reused by either 

player. After all 2n facilities have been placed, 

their decisions are evaluated by considering the 

Voronoi diagram of the 2n points in Q. At the 

end of the game, the Voronoi diagram of these 

2n points is constructed; each player wins the 

total area of all cells belonging to points in his or 

her set. The player with the larger total area 

wins. 

The most natural Voronoi game is played in a 

two-dimensional arena Q using the Euclidean 

metric. But in numerous applications the 

Euclidean metric does not provide an appropriate 

way of measuring distance. Up to now, nobody 

seems to know how to win this game, even for 

very restricted regions Q, unless the game is 

reduced to a single round [2, 3].   Ahn et al. [1] 

showed that for a one-dimensional arena, i.e., a 

line segment [0, 2n], Black can win the n-round 

game, in which each player places a single point 

in each turn; however, White can keep Blacks 

winning margin arbitrarily small. This differs 

from the one-round game, in which both players 

get a single turn with n points each: Here, White 

can force a win by playing the odd integer points 

{1, 3, …, 2n-1}, again, the losing player can 

make the margin as small as he wishes. The used 

strategy focuses on key points. The question 

raised in the end of that paper is whether a 

similar notion can be extended to the two-

dimensional scenario. Cheong et al. [2] showed 

that the two- or higher-dimensional scenario 
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differs significantly: For sufficiently large n≥ n0 

and a square playing surface Q, the second 

player has a winning strategy that guarantees at 

least a fixed fraction of 1/2 + α  of the total area. 

Their proof uses a clever combination of 

probabilistic arguments to show that Black will 

do well by playing a random point. 

In [3], Fekete and Meijer consider the one-

round Voronoi game, in a rectangular area of 

aspect ratio ƿ≤ 1. They showed that Black has a 

winning strategy for n ≥ 3 and ƿ ˃   and for 

n = 2 and ƿ > . White wins in all remaining 

cases, i.e., for n ≥ 3 and ƿ≤ , for n = 2 and 

ƿ≤ , and for n = 1. They also discuss 

complexity aspects of the game on more general 

boards, by proving that for a polygon with holes, 

it is NP-hard to maximize the area Black can win 

against a given set of points by White. 

In this paper we present a strategy for winning 

a special version of two-dimensional n-round 

game, where the arena is symmetric, and it does 

not contain the center of symmetry and the 

distance measure is the Manhattan norm. 

 
2.  Preliminaries 

 

We start with a definition of the n-round Voronoi 

game. There are two players, White and Black, 

each having n points to play. The players 

alternate placing points on a playing board Q 

which is symmetric. White starts the game, 

placing the first point, Black the second point, 

White the third point, etc., until all 2n points are 

played. We assume that points cannot lie upon 

each other. 

      Let W = {w1, w2, …, wn} be the set of white 

points at the end of the game and B = {b1, b2, 

…, bn} be the set of black points. At the end of 

the game, a Voronoi diagram of W  B is 

constructed; each player wins the total area of all 

cells belonging to points in his or her set. The 

player with the larger total area wins. This game 

is called Manhattan-Voronoi game when we use 

the Manhattan distance instead of Euclidean. Let 

q = (xq , yq) and r = (xr , yr) be two points in the 

plane, the Manhattan distance of q and r is 

defined by the equation 
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        In Manhattan Voronoi diagram, the bisector 

is defined with Manhattan metric. Note that if 

two points are the diagonal vertices of an aligned 

square then their bisector is no longer a curve: it 

consists of two quarter-planes connected by a 

line segments. So we assume that points are in 

general position, i.e., there are no such pairs of 

points. The bisector with horizontal parts is 

called pseudo-horizontal and the bisector with 

vertical parts is called pseudo-vertical. The 

Voronoi cells in Manhattan Voronoi diagram is 

not necessarily convex, but it always star-shaped 

with respect to its site. Every edge of a cell 

consists of at most three straight lines that are 

parallel to the x-axis, y-axis, or diagonal lines 

within angle  ᴫ/4 or 3ᴫ/4. The cell of site q is 

infinite if q is on the boundary of the convex hull 

of sites, but not conversely. 

See figure 1. 

 

     The center of symmetry in region Q is 

denoted by O. All distances are measured 

according to the Manhattan norm. Generally, for 

a set of points S, the Manhattan Voronoi diagram 

of S is denoted by MV(S). If p ϵ S, then C(p) 

denotes the Voronoi cell of p in MV(S) and |C(p)| 

denotes the area of C(p). 

If  p = (x, y), the Voronoi cell of p is also 

denoted by C(x, y).  

 

Lemma 1: A Voronoi cell in Manhattan-metric 

Voronoi diagram has no 45o  angel by the 

general position assumption.  

Let p and q be two adjacent sites. If the bisector 

of line segment pq is pseudo-horizontal (or 

vertical), the common edge between them is 

called pseudo-horizontal (or vertical). Let e and 

e׳ be two adjacent edges of C(p). There are four 

cases: 

1.  e is horizontal and e׳  is vertical, 

2.  e is pseudo-horizontal and e׳ is vertical , or e 

is horizontal and   e׳   is pseudo-vertical, 

3. e is pseudo-horizontal and e׳ is pseudo-

vertical, 
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4. e is pseudo-horizontal and e׳ is (pseudo-

)horizontal, or e is pseudo-vertical and e׳ is 

pseudo-(vertical). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

In case 1, the intersection is called 90o -

intersection (figure 2a) or 270o-intersection 

(figure 2b). In case 2, if the horizontal part of e 

intersects e0, the intersection is 90-intersection 

(figure 2c) or 270o-intersection (figure 2d). If the 

diagonal part of e intersects e׳ , the intersection is 

called pseudo- 90o -intersection (figure 2e) or 

pseudo- 270o -intersection (figure 2f). The 

intersection is similarly defined for horizontal e 

and pseudo-vertical e׳  in case 2. In case 3, if the  

 

 

 

horizontal part of e intersects a vertical part of e׳, 

the intersection is 90o -intersection (figure 2g) or  

270o -intersection (figure 2h), otherwise it is a 

pseudo - 90o -intersection (figure 2e) or pseudo-

270o -intersection (figure 2f). In case 4, the 

intersection is called 0o -intersection (figure 2i). 

     Let p be a site in S with finite region. Let us 

assume that the origin of coordinate system is at 

p and call the four areas counterclockwise by 

area I, II, III and IV and {p1, p2, …, pm}   S is 

the neighbors of p in Manhattan-Voronoi 
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diagram which are sorted around p 

conterclockwisely in order to their angle with 

positive direction of X-axis. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The intersection between two polygons C(p) 

and C(pi) is called Voronoi edge and denoted by 

ei. Note that ei consists of at most three straight 

lines that are parallel to the x-axis, y-axis, or 

diagonal lines within angle ᴫ/4 or 3ᴫ/4. The 

bisector of line segment ppi is denoted by bi. If bi 
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is pseudo-horizontal (or vertical), ei is called 

pseudo-horizontal (or vertical).  

We divide the plane into eight areas by lines x 

= 0, y = 0, y = x and y = -x. We denote the 

obtained open areas by A1, A2, ..., A8 as shown in 

figure 3. The horizontal half-lines are denoted by 

H1 and H2 and vertical half-lines are denoted by 

V1 and V2. Note that if pi is inside areas A2, A3, 

A6 and A7, then bi   is pseudo-horizontal, if pi is 

inside areas A1, A4, A5 and A8, then bi is 

pseudo-vertical,  if pi is on V1 and V2, then bi is 

horizontal; if pi is on H1 and H2, then bi is 

vertical. By the general position assumption, pi 

does not lie on diagonal lines. 

 

 

 

 

 

 

 

 

Lemma 2: A Voronoi cell in Manhattan-

Voronoi diagram does not have any 270o and 

pseudo-270o -intersections.  

 

Proof: We assume for a contradiction that C(P) 

has a 270o -intersection which is made by edges 

ei and ei+1. Without less of generality, suppose 

that ei+1 is vertical (or pseudo-vertical) and ei is 

horizontal (or pseudo-horizontal). First we note 

that in counterclockwise order if pi is before pi+1, 

then ei will be before ei+1. As we mentioned, the 

MV(S) regions are star-shaped, and p can visit 

the whole boundary of C(p). Then p should be in 

region R which is shown in figure 4.pi  should lie 

on top of ei and inside area A2  A3 and pi+1 

should be at right side of ei+1 and inside area A8 [ 

A1. Whereas, in counterclockwise order the sites 

inside A8  A1 are before the sites inside A2  

A3. That is a contradiction. Then C(p) does not 

have any 270o and similarly pseudo-270 

intersections. 

Lemma 3: A bounded Voronoi cell in 

Manhattan-Voronoi diagram has exactly four 90o 
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or pseudo-90o -intersections. Moreover, there is 

exactly one 90o  or pseudo-90o -intersection 

inside each area I, II, III or IV. 

 

Proof: Consider four areas A2 A3 V1, 

A4 A5 H2, A6 A7 V2 and A8 A1 H1. We 

know that, for the sites inside A8 A1 H1 and 

A4 A5 H2 the edges of C(p) are vertical or 

pseudo-vertical and for the sites inside 

A2 A3 V1 and A6 A7 V2 the edges of C(p) are 

horizontal or pseudo-horizontal. As we assumed 

that C(p) has finite Voronoi region, there must be 

at least one site inside each area. Otherwise, 

from that area the region will be open. In 

counterclockwise order, the intersection of the 

edge relevant the last site of each area, and the 

first edge of the next adjacent area will make 

four intersections which are 90o  or pseudo-90o 

and the remaining intersections are 0o -

intersections (by Lemma 2). Note that the 

intersection between the edge of the cell of last 

site in area A8  A1 H1 and the  first edge of A2 

A3  V1 occurs in area I and so on. Then there 

is exactly one 90o or pseudo-90o -intersection in 

each area I, II, III or IV.  

    Obviously White starts any k-th round of the 

game by placing his k-th point, wk, and Black 

terminate it by placing her k-th point, bk, on the 

playing board Q. The total area which is obtained 

by Black at the end of round k is denoted by SBk 

and the total area which is obtained by White is 

denoted by SWk. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.  The game 
 

In this version of Voronoi game, we suppose that 

the board does not contain center of symmetry. 

In this version, we will see that Black has a 
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winning strategy or they tie. In other words, we 

will find a strategy for Black's play such that SBn 

≥ SWn. 

For a point A inside a symmetric polygon Q, the 

mirror-image of point A respect to the symmetry 

center of Q, O, which is denoted by A׳, is a point 

inside Q such that O is the middle point of line 

segment AA׳. 

Theorem 1: The second player, Black, 

never loses the game. Now for proving the above 

claim, we present a winning strategy for the 

second player. In k-th round: 

    If k ≤ n - 1, Black places her point at location 

w׳k. 

 If k = n, Black places her point at location 

w0n or at a location close to w׳n with distance ɛ 

which is determined later. 

    Clearly if Black places her point at w0n they 

tie. We will show that sometimes there is a 

location very close to w׳n such that if Black 

places her point there, she can win the game. 

Therefore for proving the above theorem it 

suffices to prove this lemma. 

  Lemma 4: In a Manhattan-Voronoi game 

board, let b be a virtual black point on board, 

sometimes we can move b a little, horizontally or 

vertically, such that the area of C(b) increases.  

From this lemma, sometimes there is a 

location very close to w׳n such that if Black 

paces her last point at there, then |C(w׳n)| < |C(bn)|, 

i.e., Black can win the game. For proving this 

lemma, we need some notations.  

Definition:  Let P be a polygon whose sides 

are parallel to the x-axis, y-axis, or diagonal lines 

within angle ᴫ/4 or 3ᴫ/4. Let e be a side of P. If e 

is not horizontal or vertical, the orthogonal 

length of e is defined by |e| / , otherwise its 

orthogonal length is its length. The orthogonal 

length of a subchain of P is the sum of 

orthogonal lengths of line segments of chain and 

denoted by OL(.). 

Let p be a site in a Manhattan-Voronoi diagram. 

In polygon C(p) draw a vertical line l through p. 
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Line l lies inside C(P) entirely because Voronoi 

cells are star-shaped in Manhattan-Voronoi 

diagram. The border of C(p) is divided into two 

subchains by line l, the right subchain of C(p) that 

is denoted by R(p) and the left, L(p). Then draw a 

horizontal line l0 through p. Line l0 lies inside 

C(p) entirely too. The border of C(p) is divided 

into two subchains by line l0, the upper chain of 

C(p) that is denoted by U(p) and the lower, D(p). 

Let p be a black site, the segments of R(p) which 

are adjacent to a white cell are denoted by Rw(p). 

Similarly we define Lw(p), Uw(p) and Dw(p). 

First we place a virtual black point at w׳n . If 

OL(Rw(w׳n)) = OL(Lw(w׳n )) and OL(Uw(w׳n)) = 

OL(Dw(w׳n )), Black places bn at w׳n and they tie. 

Otherwise, without less of generality assume that 

OL(Rw(w׳n )) > OL(Lw(w׳n )), then Black places 

bn at right side of w׳n , on a horizontal line 

through w0n such that distance between bn and  

w׳n  is a small number ɛ which is determined 

later. In this case we will show that she can win 

the game. 

Now we want to move virtual site b from 

position w׳n  horizontally and compute the 

variation of area of is Voronoi cell as a function 

of coordinates of new position. Let the origin of 

coordinate system lies on w׳n  and call the four 

areas counterclockwise by area I, II, III and IV 

and { p1, p2, …,  pm } is the neighbors of b in 

Manhattan-Voronoi diagram which are sorted 

around b conterclockwisely in order to their 

angle with positive direction of x-axis. 

When b=(x,y), the difference between the 

orthogonal length of Rw(x, y) and Lw(x, y) is 

denoted by ∆Ph(x, y) = OL(Rw(x, y)) - OL(Lw(x, 

y)). Suppose that b moves from (0, 0) to (x, 0). 

We denote the difference between the areas of 

C(0, 0) and C(x, 0) by ∆S(x). We want to put 

some constraints on x such that the topology of 

cell C(0, 0) does not change. Clearly x must be 

less than a real positive number that is dependent 

to its neighbors. We call this number β . So we 

have x < β. If b moves horizontally, the new 

Voronoi cell is changed as shown in figure 5(a). 

We want to find ∆ S(x). 
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The bounded area between polygons C(0, 0) 

and C(x, 0) can be subdivided into some 

rectangles with width x/2 and parallelograms 

with height x/  and isosceles right triangles 

with side length x/2. The rectangles are erected 

on horizontal and vertical edges of polygon C(0, 

0) and parallelograms are erected on diagonal 

edges of polygon C(0, 0). The isosceles right 

triangles are created when we have a 90o or 

pseudo- 90o -intersection and when C(x, 0) 

intersects C(0, 0). See figure 5(b). Note that 0 -

intersections cannot make any triangles. 

Let N1 be the number of 90o -intersections of 

C(b) inside area I and M1 be the number of 

pseudo- 90o -intersections of C(b) inside area I. 

Similarly Ni and Mi are defined where 2 ≤ i ≤ 4. 

By Lemma 3, Ni = 0 or 1, Mi = 0 or 1 and Ni +Mi 

= 1 where 1 ≤ i ≤ 4. 

Theorem 2: ∆ S(x) = (∆Ph(0, 0) / 2) x - 

(N/8) x2 where N is a non-negative integer 

number less than or equal 4. 

Proof: Let SG be the gained area by b after 

movement and SL be the lost area. SG is 

composed by some rectangles, parallelograms 
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and small isosceles right triangles that rectangles 

and parallelograms are made by segments of 

Rw(0, 0) and triangles are made by 90o or 

pseudo-90o -intersections at Rw(0, 0). Also at two 

ends of Rw(0, 0), at most six triangles are lost. So 

SG = (x/2)OL(Rw(0, 0))+n1(1/2)(x/2)(x/2)- 

6(1/2)(x/2)(x/2). Now we want to find n1. At 

every 90o -intersection two triangles are made 

and at every pseudo-90o -intersections on 

triangle is made. So n1 = 2(N1 + N4) + M1 + M4. 

Similarly SL = (x/2)OL(Lw (0, 0)) - 

n2(1/2)(x/2)(x/2) + 2(1/2)(x/2)(x/2) where n2 = 

2(N2 + N3) + M2 + M3. Therefore we have ∆S(x) 

= SG - SL = (x/2) ∆Ph(0,0)+(n1 - n2 - 8)(x2/8). Let 

n = 8+n2 – n1, so N = 8-

(2(N1+N2+N3+N4)+M1+M2+M3+M4) = 8-

(4+N1+N2+N3+N4) = 4-(N1+N2+N3+N4) ≥ 0 

and N ≤ 4. So we are done. 

Note that N is only depended to the shape of 

C(b) and can be computed before movement. 

Also it remains x if the topology of C(b) does not 

change after movement. 

If b moves from (0, 0) to (x, 0) that x > 0, 

parabola ∆S(x) has a global maximum at x = 

(2Ph(0, 0))/N and ∆S(x) > 0 if and only if 0 < x < 

(4Ph(0, 0))/N. So if Ph(0, 0) > 0 we can move b 

to the position (ɛ, 0) where ɛ < (4Ph(0, 0))/N and 

this leads to increase the area of C(0, 0) and the 

proof of Lemma 5 is now completed. 

 

4.  Conclusion  

We considered the Manhattan-Voronoi game on 

a symmetric board Q, played in n rounds when 

first player does not place his last point at center 

of symmetry. First we showed that in a 

Manhattan Voronoi  diagram a site can move a 

little around its position such that the topology of 

its cell does not change and its area increases and 

used it to present a winning for the second 

player. 
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