

International Journal of Computer & Information Technologies (IJOCIT)
www.ijocit.ir

ISSN = 2345-3877

Demonstrate the Crucial Need to Review the Architecture of

Distributed Systems and to investigate the Deficiencies and

problems

Masoud Rafighi
1
, Nasser Modiri

*2
, Yaghoub Farjami

3

Department of IT
1,2,3

Qom University
1,3

, Zanjan Azad University
2

Qom
1,3

, Zanjan
2

Iran
1,2,3

Masoud_r62@yahoo.com
1
, nassermodiri@yahoo.com

2
, farjami@gmail.com

3

Keywords: Data-centric architecture, Pipe and filters architecture, Architecture Client/Server.

1. Introduction

Customers’ requirements control the creation and

deployment of software. Customers demand

more and better functionality, they want it

tailored to their needs, and they want it

“yesterday.” Very often, large shops prefer to

develop their own in-house add-ons, or tweak

and replace existing functions. Nobody wants to

reinvent the wheel, but rather to integrate and

build on existing work, by writing only the

specialized code that differentiates them from

their competition. Newer enterprise-class

application suites consist of smaller stand-alone

products that must be integrated to produce the

expected higher-level functions and, at the same

time, offer a consistent user experience. The

ability to respond quickly to rapid changes in

requirements, upgradeability, and support for

integrating other vendors’ components at any

time all create an additional push for flexible and

extensible applications.

Abstract:- In this paper, the architecture of distributed systems are investigated. Three of the most

important and most efficient architectures are compared and their problems will express. Every one of

these architectures is unable and ineffectiveness to answer considered deficiencies for distributed

systems. It is necessary to have architecture which response deficiencies and problems.

mailto:Masoud_r62@yahoo.com1
mailto:nassermodiri@yahoo.com2

© 2015, IJOCIT All Rights Reserved Volume 3, Issue 04 Page 843

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Nasser Modiri

November, 2015

Down in the trenches, developers must deal with

complex infrastructures, tools, and code. The last

thing they need is to apply more duct tape to an

already complex code base, so that marketing

can sell the product with a straight face.

Software Architecture [31; 32] describes the

high-level structure of a system in terms of

components and component interactions. In

design, architecture is widely recognized as

providing a beneficial separation of concerns

between the gross system behavior of

interacting components and that of its

constituent components. Similarly this

separation is also beneficial when considering

deployed systems and evolution as it allows

us to focus on change at the component level

rather than on some finer grain.

For instance, previous work described some of

the issues involved in specifying a limited form

of dynamic software structure for distributed

systems in which the set of components and

their interaction change as execution progresses

and the system evolves [33]. A change to the

software architecture could occur either as the

result of some computation performed by the

system or as a result of some external

management action such as to insert a new

component and to change those connections

within the system to accommodate the new

component. Management actions are

performed by a configuration manager [34].

Which maintains an overall view of the structure

of a system in terms of components and their

interconnections and performs changes in the

context of that view? In essence, the

configuration manager is responsible for

ensuring that an executing system conforms

precisely to its architectural specification. This

approach can however be too restrictive for

current dynamic, open systems.

The paper is organized in six sections. Section

second, introduces software architecture.

Distributed systems are discussed on Section

three. Architectures for Development of

Software Distributed are mentioned in section

forth. Section fifth includes Measurement and

Analysis of the Architecture Criteria. Section

sixth discuss about problems. Finally,

conclusions are presented in section seven.

2. Software Architecture

Architecture, the fundamental organization of

a system consisting of components, each of

which is associated with each other and with the

system and the principles governing its design

and evolution is. Software architecture is the

choice of a general structure for implementing a

software project based on a set of user

requirements and business of software systems

which it can implement our requirements,

optimize the software quality, production and

© 2015, IJOCIT All Rights Reserved Volume 3, Issue 04 Page 844

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Nasser Modiri

November, 2015

maintenance and accelerate it. Nowadays due to

the development of distributed systems that are

constantly changing need for a flexible

architecture can be felt more than ever [28].

Figure 1: Architecture: Place in System Development Cycle [28]

3. Distributed Systems

A distributed system is essentially a computer

system where components of the system are held

on physically separated, autonomous computers.

These machines communicate through the use of

a computer network, either a fixed or, in the case

of mobile applications, a wireless network. The

distributed systems appear to users as a single,

integrated computing facility.

In recent years, distributed systems have

become increasingly popular and important in

modern computing. They provide opportunities

for increasing the reliability, availability and

performance of applications. However, perhaps

the most important feature of a distributed

system is that it allows the integration of

existing systems. Companies do not wish to

rewrite large numbers of legacy applications and

a distributed system allows these applications to

be integrated in a relatively straightforward

manner.

A distributed system may comprise

components written in a number of different

programming languages, running on different

operating systems on a variety of computer

architectures.

In many cases, a distributed system may be

cheaper than a single, centralized system. A large

number of small, low-power systems may prove

© 2015, IJOCIT All Rights Reserved Volume 3, Issue 04 Page 845

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Nasser Modiri

November, 2015

cheaper to purchase than a single mainframe or

supercomputer. This is the approach employed in

Beowulf clusters, which allow a collection of

computers to act as a single large computer.

There are obviously many significant

disadvantages to distributed systems. They are

much more complicated to design, build and

maintain than an equivalent centralized system.

There are a large number of possible failures that

could occur in a distributed system, far more

than would be found in a centralized system.

Because of this, a distributed system will have

multiple points of failure, increasing the

likelihood of the system not functioning

correctly. Communication over a network will

always be far slower and less reliable than

communication over a local bus, which has a

significant effect on the performance of a

distributed system [4, 5, and 29].

Distributed systems architectures

• Client--server architectures

 Distributed services which are called

on by clients. Servers that provide

services are treated differently from

clients that use services.

• Distributed object architectures

 No distinction between clients and

servers. Any object on the system may

provide and use services from other

objects [30].

4. Architectures for Development

of Software Distributed

4.1. Data-Centric Architecture

The goal of this architecture is to maintain the

integration and the ability of Aggregation. The

word “data-centric” refers to systems that the

availability and timeliness of the data is an

appropriate descriptive of system performance.

A client runs on a set of independent control

field and common data that is accessed by all

customers and it can be as a passive source (such

as a file) or an active source (Blackboard).

The concept of association can refer to two

groups:

 Common data act as a passive source

(such as a file)

 Common data act as an active source

(such as a blackboard)

 The blackboard against passive source

sends massage to customers on the time of

changing data so it is active. Blackboard

with this style, as it would include arrows

that can be derived from the shared data.

The architectural style is always

expanding and improving importance.

This is due to a structural solution is to

achieve integration capabilities In many

systems, especially systems of pre-built

components, data integrity provided by

mechanism blackboard. In this style, a

major advantage is that customers are

© 2015, IJOCIT All Rights Reserved Volume 3, Issue 04 Page 846

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Nasser Modiri

November, 2015

available as independent and common

data independent of the customer.

Therefore, this style is scalable and can

easily add new customers.

This style has high Corrigibility too and it’s

Due to the change of each customer is having no

effects on other customers. In this style, if a

connection is established between the customers

In spite of the fact that it will reduce

Corrigibility, it increases the efficiency [16, 17,

and 18].

4.2. Pipe and Filters Architecture

Pipe and Filter emphasize on gradual conversion

and processing data with consecutive

components. This architecture is a popular style

of UNIX operating system family. In this style

Filters are components and data will conversion

gradually. The pipes are connectors which don’t

get any state, they just used between filters for

moving. The rules that have governed in this

style show how close the pipes and filters are

also specified. Every pipe has one source end

which is connect to output port and one sink end

which is connect to input port [23].

4.3. Architecture Client/Server

This architecture used the server and client with

different characteristics. The server will do

heavy processes and the client will do light

processes. Client and server by sending request

and response show the aspects of cooperation in

the processing operations. In this architecture,

the operating which does on a program devise

between the server and the client [9, 10].

Figure 2: Server & Client Arcgitecture

5. Measurement and Analysis of the

Architecture Criteria

5.1. Layout of components
Components as the original block and

computational entities participating in the

construction of system throw internal

computation and external communication do

their choruses. Every component communicates

with environment by one or more port. A user

interface can be a common variable; the name of

a procedure which calls from other component; it

is a set of events that can occur as a component

and other mechanisms. Properties of a

component, the data for analysis and software

implementation specifies.

© 2015, IJOCIT All Rights Reserved Volume 3, Issue 04 Page 847

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Nasser Modiri

November, 2015

5.2. Create
Configuration is a connected graph which

sometimes referred to as the topology which is

composed of components and connectors and

describes the structure of architecture.

5.3. Connection

When connector makes a connection between

two components, component defines an

interface. And every component can have several

interfaces. An interface is concerned to just one

component and every interface of one

component can connect to several interfaces in

other components. For example in Bus-Oriented

architecture the interface of every component is

connected to the bus connector and so it will

connected to several interface in other

components. Attributes can also be indicated by

some of the feature, such as communication,

buffering capacity and so on.

5.4. Development
Develop and promote will be Causes the

development and software update in computer

systems so an important metric that can be

considered in the selection of the architecture is

extensible metric. The software architecture must

be Extensibility. We evaluate it since this metric

is a major role in architecture.

5.5. The Main Advantage

Each of software architecture has advantages

compared to other architectures. The software

architecture eliminates defects in other

architectures and complement previous

architectures.

5.6. The Main Problem

Although each software architectures try to be

the best and perfect, but with the development of

information systems and their development is

still facing problems and In some cases, the

problems faced.

These criteria were chosen only for the problems

and shortcomings of Distributed software

development architectures and of course there

are other factors and criteria that are not effective

in this research. To see a full description and

explanation of software metrics can be [M. Shaw

and D. Garlan, 1996] presented [27].

Table 1 : Compare Architectures

Client/server Pipe and filters Data- centric

Data is exchanged

between server and client

[22].

Filters are component

and data will

conversion gradually

Data is stored in a

database and a

common data is

layout

Criterion

Architecture

© 2015, IJOCIT All Rights Reserved Volume 3, Issue 04 Page 848

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Nasser Modiri

November, 2015

[12,14]. accessed by all

customers [24,25].

This architecture used the

server and client and the

operating which does on a

program devise between

the server and the client
[19,20].

The architecture

emphasizes the

gradual conversion

and processing data

with consecutive

components [11,15].

The architecture

emphasizes the

accessing and

updating data

[24,26].

Creation

Connect the customer /

client to the server by

using the network

platform [21].

The pipes are

connectors which

don’t get any state,

they just used between

filters for moving

[12,11].

The connection is

done in two ways:

When the share data

as a passive source

acts like file.

When the share data

is as a blackboard

[24,26].

Connection

Development to some

extent that the server and

network can hold it. So in

fact system development

is limited [19,20].

For development

every pipe has one

source end which is

connect to output port

and one sink end

which is connect to

input port [15].

It has high

Corrigibility Due to

the change of each

customer is having

no effects on other

customers [24,26].

development

it's not selected from

another architecture

[19,20].

This architecture is a

popular style of UNIX

operating system

family [14,11].

it's not selected from

another architecture

[26].

Elected or a

combination

of other

architectures

Exploiting the potential of

existing hardware,

according to the principle

of division operations

Optimizing the use and the

use of shared resources

Optimizing the ability of

users of the different

There is the possibility

of balance and

distribution of each

filter can be alone and

isolated from the rest

of itself process.

Capability that allows

modifying and re-use

of the system as a

simple combination of

individual components

The data integrity

provided by

mechanism

blackboard and

common data

independent of the

customer. Therefore,

this style is scalable

and can easily add

The main

advantage

© 2015, IJOCIT All Rights Reserved Volume 3, Issue 04 Page 849

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Nasser Modiri

November, 2015

activities [19,20]. behavior with the filter

[12,15].

new customers

[24,25].

No encapsulates the

strategic policies Software

Reducing the efficiency of

the program by raising the

number of concurrent

users

Improve application

performance and reform

has been seriously

challenged [22].

arrange filter is

difficult In addition,

the filters can’t no way

to solve the problem

together therefore,

efficiency will reduce

[14,15]

In this style if a

connection is

established between

the customers In

spite of the fact that

it will reduce

Corrigibility, it will

increase the

efficiency [24,26].

The main

problem

6. Problems Discussion
The feasibility survey was conducted for

exploring attitudes of the users and potential

customers. It showed that main obstacles

which hinder usage of service are related to

possible cloud service termination or failure

and vendor lock-in [1]. The rule engine

component enables to inform the customer. If

he can retrieve the data bach from cloud in the

required format and ensures possibility to use

the backup data with the local system of the

customer and prevent from vendor lock-in

situation[1]. Availability, data lock-in, data

confidentiality and auditability are the

obstacles which affect adoption of cloud

computing [2]. Although cloud computing

providers are facing several architecture

and design challenges, however, security

concerns, interoperability, data lock-in are on

top of those challenges. Most of the clouds

are vendor-locked, as several cloud

providers offer APIs (application

programming interfaces) that are well-

documented, but are mainly proprietary and

exclusive to their implementation and thus not

interoperable[3].

For 20% of the respondents, risk of vendor

lock in, loss of control, and security were

sources of concern. The ability to meet

government and industry standards was not seen

as a concern, as none of the respondents selected

this option.[6] Now, certain characteristics of

this alternative make it attractive for SMEs:

greater adaptability, no vendor lock-in, property

of the source code, and cost comparable to other

alternatives [7]. This last problem has been

further pursued by IS researchers who have

looked at package customization and

organizational adaptation as alternative ways of

resolving such misalignment [7].

© 2015, IJOCIT All Rights Reserved Volume 3, Issue 04 Page 850

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Nasser Modiri

November, 2015

At present, there are many companies

implement Enterprise Resource Planning

(ERP), some companies choose to buy the

ERP software directly, or hire the

professional group coding software for the

companies. However, due to the poor flexibility

of the system, and not very appropriate for

business processes and management concepts,

Some companies hitch have lots of profits

choose to self-development the ERP system

[8]. ERP system change the business process of

the enterprises, and it is difficult to personnel

adapt to the new system, as a result, it will also

prolong the whole time in ERP implementation

[8]. In this condition, the system can better

focus on needs of users. How to solve these

business problems and technical details will be

completed through the conversion tool. Although

the definition of the conversion is difficult, when

business needs changes, it can be used again. In

the long run, this effort has positive effect to the

rapid development [8].

By analyzing the existing system and the

resources in the world have pointed to the

problems, problems that are not responsive

architectures are as follows:

 Extensibility problem involving (the laws

have changed, change in data, the

changes in the organization, integration,

change in operations, changes in systems,

developing new systems).

 Problem of imprisonment or trapped data.

 Tele-programming problem, the only

programmer can develop the system

further.

 To solve the above problems, there are

solutions which are listed below:

One effective way to make your application

extensible is to expose its internals as a scripting

language and write all the top level stuff in that

language. This makes it quite modifiable and

practically future proof (if your primitives are

well chosen and implemented). A success story

of this kind of thing is Emacs. I prefer this to the

eclipse style plugin system because if I want to

extend functionality, I don't have to learn the

API and write/compile a separate plugin. I can

write a 3 line snippet in the current buffer itself,

evaluate it and use it. Very smooth learning

curve and very pleasing results.

One application which I've extended a

little is Trace. It has a component

architecture which in this situation means

that tasks are delegated to modules that

advertise extension points. You can then

implement other components which would

fit into these points and change the flow.

But due to the distributed systems need

database, these solutions can’t be hopeful

way. Like most things in life, taking the

time to plan ahead when building a web

service can help in the long run

© 2015, IJOCIT All Rights Reserved Volume 3, Issue 04 Page 851

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Nasser Modiri

November, 2015

understanding some of the considerations

and tradeoffs behind big websites can result

in smarter decisions at the creation of

smaller web sites. Below are some of the

key principles that influence the design of

large-scale web systems:

 Availability: The uptime of a website is

absolutely critical to the reputation and

functionality of many companies. For some of

the larger online retail sites, being unavailable

for even minutes can result in thousands or

millions of dollars in lost revenue, so designing

their systems to be constantly available and

resilient to failure is both a fundamental

business and a technology requirement. High

availability in distributed systems requires the

careful consideration of redundancy for key

components, rapid recovery in the event of

partial system failures, and graceful degradation

when problems occur.

 Performance: Website performance has

become an important consideration for most

sites. The speed of a website affects usage and

user satisfaction, as well as search engine

rankings, a factor that directly correlates to

revenue and retention. As a result, creating a

system that is optimized for fast responses and

low latency is the key.

 Reliability: A system needs to be

reliable, such that a request for data will

consistently return the same data. In the event

the data changes or is updated, then that same

request should return the new data. Users need

to know that if something is written to the

system, or stored, it will persist and can be

relied on to be in place for future retrieval.

 Scalability: When it comes to any large

distributed system, size is just one aspect of

scale that needs to be considered. Just as

important is the effort required to increase

capacity to handle greater amounts of load,

commonly referred to as the scalability of the

system. Scalability can refer to many different

parameters of the system: how much additional

traffic can it handle, how easy is it to add more

storage capacity, or even how many more

transactions can be processed.

 Manageability: Designing a system that

is easy to operate is another important

consideration. The manageability of the system

equates to the scalability of operations:

maintenance and updates. Things to consider for

manageability are the ease of diagnosing and

understanding problems when they occur, ease

of making updates or modifications, and how

simple the system is to operate. (I.e., does it

routinely operate without failure or exceptions?)

 Cost: Cost is an important factor. This

obviously can include hardware and software

costs, but it is also important to consider other

facets needed to deploy and maintain the

© 2015, IJOCIT All Rights Reserved Volume 3, Issue 04 Page 852

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Nasser Modiri

November, 2015

system. The amount of developer time the

system takes to build, the amount of operational

effort required to run the system, and even the

amount of training required should all be

considered. Cost is the total cost of ownership.

Each of these principles provides the basis for

decisions in designing distributed web

architecture. However, they also can be at odds

with one another, such that achieving one

objective comes at the cost of another. A basic

example: choosing to address capacity by simply

adding more servers (scalability) can come at the

price of manageability (you have to operate an

additional server) and cost (the price of the

servers).

When designing any sort of web application it is

important to consider these key principles, even

if it is to acknowledge that a design may sacrifice

one or more of them.

When it comes to system architecture

there are a few things to consider: what are

the right pieces, how these pieces fit

together, and what the right tradeoffs are.

Investing in scaling before it is needed is

generally not a smart business proposition;

however, some forethought into the design

can save substantial time and resources in

the future.

This section is focused on some of the

core factors that are central to almost all

large web applications: services,

redundancy, partitions, and handling failure.

Each of these factors involves choices and

compromises, particularly in the context of

the principles described in the previous

section.

When considering scalable system design, it

helps to decouple functionality and think about

each part of the system as its own service with a

clearly defined interface. In practice, systems

designed in this way are said to have a Service-

Oriented Architecture (SOA). For these types of

systems, each service has its own distinct

functional context, and interaction with anything

outside of that context takes place through an

abstract interface, typically the public-facing API

of another service.

Deconstructing a system into a set of

complementary services decouples the

operation of those pieces from one another.

This abstraction helps establish clear

relationships between the service, its

underlying environment, and the consumers

of that service. Creating these clear

delineations can help isolate problems, but

also allows each piece to scale independently

of one another. This sort of service-oriented

© 2015, IJOCIT All Rights Reserved Volume 3, Issue 04 Page 853

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Nasser Modiri

November, 2015

design for systems is very similar to object-

oriented design for programming.

Another key part of service redundancy is

creating a shared-nothing architecture. With

this architecture, each node is able to operate

independently of one another and there is no

central "brain" managing state or

coordinating activities for the other nodes.

This helps a lot with scalability since new

nodes can be added without special

conditions or knowledge. However, and most

importantly, there is no single point of failure

in these systems, so they are much more

resilient to failure.

As they grow, there are two main

challenges: scaling access to the app server

and to the database. In a highly scalable

application design, the app (or web) server is

typically minimized and often embodies a

shared-nothing architecture. This makes the

app server layer of the system horizontally

scalable. As a result of this design, the heavy

lifting is pushed down the stack to the

database server and supporting services; it's

at this layer where the real scaling and

performance challenges come into play.

Finally, another critical piece of any

distributed system is a load balancer. Load

balancers are a principal part of any

architecture, as their role is to distribute load

across a set of nodes responsible for servicing

requests. This allows multiple nodes to

transparently service the same function in a

system. Their main purpose is to handle a lot

of simultaneous connections and route those

connections to one of the request nodes,

allowing the system to scale to service more

requests by just adding nodes. Load balancers

are an easy way to allow you to expand

system capacity, and like the other techniques

in this article, play an essential role in

distributed system architecture. Load

balancers also provide the critical function of

being able to test the health of a node, such

that if a node is unresponsive or over-loaded,

it can be removed from the pool handling

requests, taking advantage of the redundancy

of different nodes in your system

7. Conclusion

The comparison of these methods with

parameters (layout, create, connect,

development, main advantage, the main

problem) to the conclusion that although each of

these architectures claim that are suitable for

distributed system or changing, but in practice

they aren’t responsive these changes in system.

A repeating theme in my development work has

been the use of or creation of an in-house plug-in

architecture. I've seen it approached many ways -

configuration files (XML, .conf, and so on),

© 2015, IJOCIT All Rights Reserved Volume 3, Issue 04 Page 854

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Nasser Modiri

November, 2015

inheritance frameworks, database information,

libraries, and others. In my experience:

•A database isn't a great place to store your

configuration information, especially co-mingled

with data

 •Attempting this with an inheritance hierarchy

requires knowledge about the plug-ins to be

coded in, meaning the plug-in architecture isn't

all that dynamic

 •Configuration files work well for providing

simple information, but can't handle more

complex behaviors

 •Libraries seem to work well, but the one-way

dependencies have to be carefully created

These examples seem to play to various language

strengths. Is good plugin architecture necessarily

tied to the language? Is it best to use tools to

create plugin architecture, or to do it on one's

own following models?

Can you say why plugin architecture has been a

common theme? What problems does it solve, or

goals does it address? Many extensible

systems/applications use plugins of some form,

but the form varies considerably depending upon

the problem being solved.

That’s a great question. I'd say there are some

common goals in an extensible system. Perhaps

the goals are all that's common, and the best

solution varies depending on how extensible the

system needs to be, what language the system is

written in, and so on. However, I see patterns

like IOC being applied across many languages,

and I've been asked to do similar plugins (for

drop in pieces responding to the same

functionality requests) over and over again. I

think it's good to get a general idea of best

practices for various types of plugins

In a world of increasingly complex computing

requirements, we as software developers are

continually searching for that ultimate, universal

architecture that allows us to productively

develop high-quality applications. This quest has

led to the adoption of many new abstractions and

tools. Some of the most promising recent

developments are the new pure plug-in

architectures.

Mentioned pathologic problems still remain open

in systems and not with these architectures

resolve common problems and the need for a

revision in architectural theory.

References
[1] Dalia Kriksciuniene, Donatas Mazeika, (2011), “Cloud

Computing and the Enterprise Needs for Data Freedom,

The Third International Conference on Future

Computational Technologies and Applications,” FUTURE

COMPUTING .

[2] Dr. Ashu Khanna, Dr. Vivek Kumar and Indu Saini,

(2012), “ERP SYSTEMS: PROBLEMS AND SOLUTION

WITH SPECIAL ,REFERENCE TO SMALL &

MEDIUM ENTERPRISES,” International Journal of

Research in IT & Management,” IJRIM , Volume 2,no. 2 .

[3] Ahmed Elragal , Moutaz Haddara, (2012), “The Future

of ERP Systems: look backward before moving forward,

CENTERIS, prise Information Systems / HCIST,

International Conference on Health and Social Care

Information Systems and Technologies, ELSEVIER,

Procedia Technology, pp. 21 – 30.

© 2015, IJOCIT All Rights Reserved Volume 3, Issue 04 Page 855

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Nasser Modiri

November, 2015

[4] R. Allen, (1997), “A Formal Approach to Software

Architecture,” PhD Dissertation, Carnegie Mellon

University.

[5] D. Garlan, D. Perry, (1995), “Introduction to the

Special Issue on Software Architecture. IEEE

Transactions on software Engineering,” Vol. 21, No.4,

p. 269-274.

[6] Jacek Lewandowski, Adekemi O. Salako, Alexeis

Garcia-Perez, (2013), “SaaS Enterprise Resource Planning

Systems: Challenges of their adoption in SMEs, IEEE 10
th

International Conference on e-Business Engineering,

[7] Placide Poba-Nzaou & Louis Raymond, (2013),

“Custom Development as an Alternative for ERP Adoption

by SMEs: An Interpretive Case Study, Information

Systems Management,” 02 Sep 2013.Published online.

[8] Liu Chen, Liu Xinliang, (2012), “Self-development

ERP System Implementation Success Rate Factors

Analysis,” IEEE XPLORE Symposium on Robotics and

Applications(ISRA) .

[9] Benatallah, B.; Casati, F.; Toumani, F. (2004), "Web

service conversation modeling: A cornerstone for e-

business automation". IEEE Internet Computing 8: 46.

[10] Tolia, Niraj; Andersen, David G.; Satyanarayanan,

M. (2006), "Quantifying Interactive User Experience on

Thin Clients" (PDF). Computer (IEEE Computer Society)

39 (3).

[11] Gokhale, S.S. , Yacoub, S. (2005), “Performability

analysis of a pipeline software architecture” Computer

Software and Applications Conference, 2005. COMPSAC

2005. 29th Annual International,pp. 77 - 82 Vol. 2, pp. 26-

28.

[12] Ernst-Erich Doberkat, (2003), “Pipelines:

Modelling a software architecture through relations”,

Acta Informatica, September 2003, Volume 40, No. 1, pp.

37-79

[13] Manuel Oriol, Thomas Gamer, Thijmen de

Gooijer, Michael Wahler, Ettore and Ferranti, (2013),

“Fault-tolerant fault tolerance for component-based

automation systems, in: Proceedings of the 4th

International ACM SIGSOFT Symposium on Architecting

Critical Systems (ISARCS 2013),” Vancouver, Canada.

[14]http://www.cs.sjsu.edu/~pearce/modules/patterns/dist

Arch/pipeline.htm [Accessed on 1 September 2015]

[15] Mary Shaw, (1996), “Some Patterns for Software

Architectures” Pattern Languages of Program Design, Vol.

2, pp. 255-269, Addison-Wesley..

[16] G. F. Ciocarlie, H. Schubert and R. Wahlin, (2010),

“A Data-Centric Approach for Modular Assurance” Real-

Time Innovations, Inc.

[17] G. Carneiro, N. Vasconcelos, (2005), “A database

centric view of semantic image annotation and

retrieval”SIGIR '05 Proceedings of the 28th annual

international ACM SIGIR conference on Research and

development in information retrieval Pages 559-566.

[18] R.Chetan, D.V. Ashoka, (2012), “Data mining based

network intrusion detection system: A database centric

approach” International Conference on Computer

Communication and Informatics (ICCCI), ,pp. 1 – 6.

[19] J. Nieh, N. Novik, S. Yang, (2013), "A Comparison

of Thin-Client Computing Architectures" , Technical

Report CUCS-022-00 (New York: Network Computing

Laboratory, Columbia University).

[20] Barros, A. P.; Dumas, M. (2006). "The Rise of Web

Service Ecosystems". IT Professional 8 (5): 31

[21] Yongsheng, H.; Xiaoyu, T.; Zhongbin, T. (2013).

"An Optimization Model for the Interconnection among

Peers of the P2P Network". Journal of Applied Sciences 13

(5): 700

[22] Dustdar, S.; Schreiner, W. (2005), "A survey on web

services composition". International Journal of Web and

Grid Services 1: 1. (2005).

[23]

http://www.fullchipdesign.com/pipeline_space_time_archi

tecture.htm [Accessed on September 2015)

[24] Lind P, Alm M, (2006), "A database-centric virtual

chemistry system", J Chem Inf Model, Vol. 46, No.3, pp.

1034.

[25] http://www.boic.com/dbgrid.htm,jun [Accessed on

Jun 2014]

[26]Wagner O. de Morais, Jens Lundström, Nicholas Wic

kström, ”A Database-Centric Architecture for Home-

Based Health Monitoring” Ambient Assisted Living and

Active Aging Volume 8277 of the series Lecture Notes in

Computer Science, pp. 26-34.

[27] M. Shaw, D. Garlan, (1996), “Software architecture:

perspectives on an emerging discipline,” Prentice Hall..

[28] M.J. Charistensen, R.H. Thayer, (2002), “The

Project Manager’s Guide to Software

Engineering’s Best Practices.” Wiley.

[29] Robert Nunn, “Distributed Software Architectures

Using Middleware,” 3C05 Coursework 2

[30] Distributed Systems Architectures, “Based on

Software Engineering,” 7 th Edition by Ian Somerville.

http://www.cs.cmu.edu/~dga/papers/tolia06-ieee.pdf
http://www.cs.cmu.edu/~dga/papers/tolia06-ieee.pdf
https://en.wikipedia.org/wiki/Computer_(magazine)
https://en.wikipedia.org/wiki/IEEE_Computer_Society
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Gokhale,%20S.S..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Yacoub,%20S..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10076
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10076
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10076
http://link.springer.com/journal/236
http://www.cs.sjsu.edu/~pearce/modules/patterns/distArch/pipeline.htm
http://www.cs.sjsu.edu/~pearce/modules/patterns/distArch/pipeline.htm
http://www.dcc.ufmg.br/eventos/sigir2005/
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Chetan,%20R..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Ashoka,%20D.V..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6151888
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6151888
http://www.nomachine.com/documentation/pdf/cucs-022-00.pdf
http://www.nomachine.com/documentation/pdf/cucs-022-00.pdf
https://en.wikipedia.org/wiki/Columbia_University
http://www.fullchipdesign.com/pipeline_space_time_architecture.htm
http://www.fullchipdesign.com/pipeline_space_time_architecture.htm
http://www.boic.com/dbgrid.htm,jun
http://link.springer.com/book/10.1007/978-3-319-03092-0
http://link.springer.com/book/10.1007/978-3-319-03092-0
http://link.springer.com/bookseries/558
http://link.springer.com/bookseries/558

© 2015, IJOCIT All Rights Reserved Volume 3, Issue 04 Page 856

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Nasser Modiri

November, 2015

[31] D. E. Perry, A. L. Wolf, (1992), “Foundations for the

Study of Software Architectures, ACM SIGSOFT

Software Engineering Notes,” Vol. 17, No. 4, pp. 40-52.

[32] M. Shaw, D. Garlan, (1996), “Software

Architecture: Perspectives on an Emerging Discipline,”

Prentice Hall.

Authors Profile

 Masoud rafighi was born

in Tehran, Iran on

1983/08/10. He is PHD

student of Qom University.

He receives M.Sc degree in

computer engineering

software from Azad

University North Tehran Branch, Tehran,

IRAN. He has recently been active in

software engineering and has developed and

taught various software related courses for

the Institute and university for Advanced

Technology, the University of Iran. His

research interests are in software

measurement, software complexity,

requirement engineering, maintenance

software, software security and formal

methods of software development. He has

written a book on software complexity

engineering and published many papers.

Nasser Modiri received the MS degree in

MicroElectronics from university of

Southampton, UK in 1986.

He received PHD degree in

Computer Networks from

Sussex university of UK in

1989. He is a lecture at

department of computer

engineering at Islamic Azad

University of Zanjan, Iran. His research

interests include Network Operation Centres,

Framework for Securing Networks, Virtual

Organizations, RFID, Product Life Cycle

Development and Framework For Securing

Networks.

 Yaghoub Farjami is one of the best

professors of IT department

of Qom University.

